水利工程施工中水土流失与水土保持措施分析

尹明明

(济宁市中正工程监理有限责任公司, 山东 济宁 272000)

摘 要 为了全面提高水利工程项目施工作业的质量,相关人员要了解水利工程施工中水土流失的影响,意识到减少水土流失造成的负面影响,采取水土保持的各项措施,以更好地强化水土管理水平,实现经济效益和环境效益和谐统一的目标。水利工程投资规模大,施工情况复杂,建设周期长,发生事故的风险高。因此,做好施工技术应用管理,保障工程质量,对于保障水利工程高质量建设具有重要意义。本文简要分析了水利工程施工中水土流失的影响和原因,并探讨了水土保持措施在水利工程施工中的应用意义,以期为相关人员提供借鉴。

关键词 水利工程:水土流失:水土保持

中图分类号:TV5

文献标志码: A

文章编号: 2097-3365(2024)09-0061-03

近些年,国家不断加大对水利建设的投入力度,水利建设在经济发展和社会进步中发挥着重要作用。但是,随之而来的水土流失问题越来越受到关注。水土流失不仅对水利结构造成直接威胁,对周边生态环境也产生深远影响。随着工程活动的增加,土壤侵蚀、水流造成的土壤侵蚀等现象日益明显,威胁到工程的长期稳定性和周边生态系统的健康。水利工程质量越来越受到关注,要注重控制水土流失,在维护环境生态平衡上保证水利工程综合工作水平符合预期,共同保证水利工程平稳安全运行。

1 水土保持理念

水土保持是指通过科学的手段和措施保护水土资 源不流失和不受污染的概念。水土保持理念的核心是 保持生态平衡,促进可持续发展。水土保持理念强调 保护和合理利用水体和土壤资源,防止其流失和污染。 基于此,水土保持理念注重生态系统的可持续发展, 通过保护和恢复自然生态系统的功能,维持物种多样 性、能量流动、物质循环的平衡, 进而提升生态系统 的稳定性和抗干扰能力。另外, 水土保持理念将经济 发展与环境保护相结合,强调可持续利用水土资源。 通过合理规划和管理, 平衡社会经济发展的需求和资 源保护的要求, 实现经济、社会、环境的协调发展。 水利工程设计是指经过科学计算和合理布局, 为实现 水资源的妥善利用和管理而进行的工程化设计。水利 工程设计包括水源工程、输水工程、排水工程等方面, 旨在满足社会经济发展的需求,确保水资源的合理配 置和有效利用。水土保持与水利工程设计之间存在比 较紧密的联系。水土保持生态系统是通过实施水土保持措施,使自然生态系统功能得到提升,从而形成更多的生态产品。因此,本文认为,水土保持生态产品指通过水土流失综合防治实现流域、区域等的生态系统质量和功能提升而提供的优质生态产品或服务"增量",能够反映水土保持经济效益、社会效益、生态效益,且具备"商品和服务"的一般特征,具有自然属性和社会属性,包括物质供给、调节服务、文化服务三类。

2 水利工程施工中水土流失的影响及原因

2.1 水利工程施工中水土流失的影响

水土流失对水利工程的直接影响显著,主要表现 在工程结构损害、水库淤积和水质恶化等方面。由于 土壤的大量流失, 地基的支撑能力下降, 工程结构变 得不稳定。水库等工程结构在水土流失的影响下,容 易发生滑坡、崩塌等现象,直接危及工程的安全性和 稳定性[1]。同时,水土流失容易导致大量沙子进入水体, 导致水库淤积。淤积加剧了水库容积的减少,影响了 水库的防洪能力和蓄电效果。此外, 水库淤积还加速 了水体富营养化过程,藻类过度生长,可能引起水质 恶化,对水库生态平衡造成破坏。水土流失会影响梯 级水塘和梯田的泥沙淤积现象,影响水利工程的总体 蓄水量,制约农田安全和水利工程的综合效益。水土 流失还会引起植被的阶段性影响, 在遇到大范围降水 气候环境时, 如果植被数量不足, 就会影响地表的实 际蓄水能力,导致土壤主体含水量下降渗漏速度不能 满足降雨速度,必然会造成大范围的渗漏问题,造成 当地的渗漏天气。水土流失造成的径流问题还会影响 周边环境的地质安全,增加泥石流、滑坡等安全事故的发生概率,影响当地人民的生命财产安全。

2.2 水利工程施工中水土流失的原因

(1) 地表植被遭到破坏。农田水利工程一般是为 了改善区域土壤结构, 水利工程的开挖和铺设会对地 表造成影响。如果水利工程施工单位不重视当地地表 植被治理, 地表自然环境和生态平衡就会受到影响。 值得一提的是,一些水利工程项目在施工作业开始前 对环境土壤进行了硬化处理, 也影响了土壤自身的挡 雨能力,一旦遇到大规模雨水冲刷就会造成水土流失 问题。(2)施工废弃物堆积。在水利项目的施工作业中, 难免会产生大量的废弃工程材料,比较常见的是石头, 其中含有大量的砂砾石。如果废弃物不按照规范化的 流程和管理要求进行处理,一旦被雨水冲刷、冲刷, 水土流失问题就会很严重[2]。(3)施工影响水土保持 情况。在中枢水利工程中, 采土和采石作业可以在附 近完成,但如果进行大规模的工程,会对地表造成破坏。 另外, 地表的有机质土壤被清除后, 底层土壤容易发 生腐蚀等问题,导致抗腐蚀能力和抗冲击能力下降, 最终影响区域安全,成为水土流失严重的地形。

2.3 水土流失与水体污染

水利工程的施工过程一般需要开挖土方、修建大坝等。这些活动会破坏地表植被,导致大量营养丰富的土壤移动和消耗,造成土地资源的浪费,使土壤质量下降,进而引起土地荒漠化。同时,也会对土壤造成污染,使土壤失去生态功能;水利工程施工过程中,裸露的土壤会因为雨水的冲刷造成水土的流失。与此同时,水利工程在施工的过程中会产生废水、废渣、固体废弃物、生产生活垃圾等污染物的排放也会对水体造成污染,严重影响水生态环境。

3 水利工程施工中水土保持措施

3.1 坡面保护与植被恢复

一方面,通过在边坡上覆盖、铺设植被、靠垫等材料,形成保护层,可以有效降低水流对土壤的冲击力,减缓水土流失。同时,植被的引入不仅增加了土壤的抗侵蚀性,而且有助于土壤结构的稳定,形成生态保护层。另一方面,边坡结构和保护措施是水土保持的重要工程手段之一。在容易发生土壤侵蚀的斜坡上设置倾斜板和倾斜块等结构,提高斜坡的抵抗能力,减缓水流对土壤的侵蚀。同时,设置适当的排水系统,合理引导雨水流向,有利于减轻边坡水土流失程度。通过土地整治和合理规划水利工程,可以减少土地开

垦和改变地形的活动,从源头上减缓水土流失。科学的施工管理和技术创新也是重要的手段。合理安排施工过程,减少机械损坏,采用环保施工技术,提高施工的生态友好性。总体而言,这些工程手段的综合运用能够有效降低水土流失风险,保护水土资源,维护生态平衡,为可持续发展提供有力支撑。

3.2 管理周边的基础设施

农田水利项目施工作业不可避免地会对周围生态环境造成破坏。因此,必须对可能存在的问题进行预估,对容易水土流失的区域进行重点治理,设置相应的排水沟和停水区域,避免水土流失问题进一步扩大,对环境安全造成影响。施工单位在施工作业期间应及时监督管理区域安全,重视山洪、山体滑坡等问题,按照水利工程项目作业管理规范合理设置防风墙,并结合边坡具体情况适当加高调节和改善边坡回填处理工作。在充分分析和了解水利项目施工作业现场环境状况的基础上,制定有效、有针对性的水土保持作业计划,严格监督作业计划执行情况,保持统一管理效果,保证综合作业的稳定性和可控性确保。

3.3 加快水土保持智慧化

坚持科技创新,加快水土保持智能化步伐,加强水土保持关键技术攻关、重大问题研究、科学技术推广和示范,夯实水土保持发展基础。依托"水利一张图",结合水土智能化需求,建立健全水土数据库,构建"水土一张图"和水土数字化场景,服务水土智能化模拟和精准化决策,科技用技术巩固水土脱贫成果。完善水土治理效果评价指标体系,构建综合治理评价模式^[3]。在数字化场景和预报预警模式的基础上,构建水土保持系统,作为水土保持决策支持和智慧化管理平台,包括人为水土流失风险、水土流失综合治理智能管理等水土流失状况的预报预警模块,提出以水土保持的科技手段和科技水平支持乡村振兴。

3.4 保护生态环境

生态影响评价是水利工程不可缺少的环节。生态影响评价涵盖项目建设规划、设计、施工、运营各个环节。通过全面细致的评估,可以识别和预测水利工程对生态环境的潜在影响,为制定有效的生态保护措施提供依据。合理划定水利工程周边生态保护区,是确保水利工程安全运营、维护生态环境平衡的重要举措。划定生态保护区时应当充分考虑生态系统的完整性和生物多样性,减少和限制人类活动对生态系统的干扰。面对全球生态环境的日益恶化,只有不断提高

公众的生态环境保护意识和参与度,才能更好地治理 污染。水利工程在建设中要通过宣传教育、技能培训、 生态游览、植树造林等活动,让公众亲身感受生态环境的脆弱和美好,增强社会公众的生态环境保护意识, 形成倡导保护环境的良好氛围。

3.5 建立完善各级水土流失监测网络

坚持以预防为主,下好水土保持"先手棋",重点防范化解水土流失易发区、重点区的危害和安全隐患;由政府牵头,建立完善省、市、县、流域调度中心,形成水土保持统筹治理机制;联合气象、环保等部门,建立汭河流域水土保持监测网络,充分发挥预测预警和工程调度的作用,为灾害防治提供技术支撑;监督水土保持监测网络的运行情况,紧盯"短板",暗访督查,压实责任。

3.6 加快推动水土保持生态产品价值实现

规范《关于建立健全生态产品价值实现机制的意 见》和《关于加强新时代水土保持工作的意见》,加 快出台配套政策, 建立健全生态水土保持产品价值实 现体系。加快出台国家层面推动水土保持生态产品价 值实现政策文件,规范水土保持生态产品价值转化流 程,明确转化关键制度要求,为在全国层面推动水土 保持生态产品价值实现提供政策依据。同时,从产权 明晰、生态产品调查监测、价值评价、经营开发、生 态补偿、交易制度、经费利用等方面完善配套政策, 强化制度支撑。摸清水土保持生态产品价值底数并及 时掌握其动态变化是水土保持生态产品价值实现的基 础。一方面要建立水土保持生态产品本底核查机制, 摸清各类水土保持生态产品数量分布、质量等级、功 能特点、权益归属、保护和开发利用等底数,形成水 土保持生态产品清单;另一方面要建立水土保持生态 产品动态监测机制,将新增水土保持项目与水土保持 生态产品价值核算结合起来,及时跟踪掌握水土保持 生态产品价值动态变化, 定期更新水土保持生态产品 清单[4]。

3.7 重视现代科技技术

在基于水土保持理念的水利工程设计中,应当重视对现代科技的应用。随着科学技术的不断进步,水土保持领域出现了许多新的科技手段,如地理信息系统(GIS)、遥感技术、数值模拟等。这些科技手段可以提供更准确、全面的数据,帮助进行水土保持问题的分析和评估。同时,还可以有效地监测和管理水土资源的变化,提出相应的保护和修复措施。因此,在

水利工程设计中应充分利用这些科技手段,使其成为水土保持工作的有效工具。同时,现代水利工程建设技术包括新材料、新装备、新工艺等方面的创新。通过采用现代建设技术,可以提高工程的质量和效益,并能够更好地兼顾项目的生态保护与经济性。例如,采用环保材料和节能设备,可以降低污染物排放,减少资源消耗^[5]。

3.8 推广绿色环保型施工技术

积极推广绿色施工技术,不仅有助于减少环境污染,还能提高施工效率和质量。推广绿色施工技术是为了提高水利工程建设的环保水平、推动行业可持续发展的重要途径。绿色施工技术强调在施工过程中减少资源消耗、降低环境污染,实现经济效益与环境效益的双赢。通过引入节能型施工机械、优化施工布局、采用环保材料等措施,能够显著降低能源消耗和排放。同时,加强绿色施工技术的研发与创新,推动技术创新与产业升级,为水利工程施工注入新的活力。推广绿色施工技术不仅有助于提升施工企业的竞争力,更能为生态环境保护贡献积极力量^[6-7]。

4 结束语

水土流失作为水利工程施工的重要问题,在本研究中得到了全面的关注和深入的分析。通过对水土流失机制和影响的分析,深刻认识到对水利工程结构和周边生态环境的严重威胁。在防治措施研究中,及时发现问题并纠正,加强水土防控措施应用水平,充分发挥现代化管理工作优势,保持水利工程项目综合工作质量,为水利工程可持续健康发展打下坚实的基础。

参考文献:

- [1] 高利民.农田水利施工中水土保持措施的探讨[J]. 农业灾害研究,2023,13(07):251-253.
- [2] 吕小斌.农村水利工程施工中的水土流失与水土保持措施[J]. 新农业,2023(13):75.
- [3] 同[1].
- [4] 刘继平.水利工程施工区水土保持措施研究[J]. 大众标准化,2023(10):80-82.
- [5] 杨颖.农村水利工程施工中的水土流失与水土保持对策[]]. 低碳世界,2023,13(03):118-120.
- [6] 杜玉梅. 农村水利工程施工中的水土流失与水土保持措施 []]. 农家参谋,2022(24):186-188.
- [7] 吴建刚.农村水利工程施工中的水土流失与水土保持措施[]].农业工程技术,2020,40(11):39-40.